Looking at mathematics from an anthropological perspective
Main Article Content
Abstract
Mathematical language (concepts, syntax an logical connections) don”t come down of any abstract heaven, but it sprouts out of vernacular languages and take roots into the same imageries that myths and legends, songs and arts do. Mathematics is a part of folklore, it forms part of popular knowledge. Trough several elementary examples we propose an anthropological approach to mathematics by means of an analysis of the symbolic device that models its concepts and procedures, especially by means of metaphors that usually underlie a lot of its concepts. Students and scholars who focus this perspective may have a broad understanding of concepts and problems involved and, inversely, of the cultures that have created them. Particularly, the specific culture of the european tribe, that created what we know today as mathematics.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es).
References
Bloor, D. (1998). Conocimiento e imaginario social. Barcelona: Gedisa.
Boyer, C. B. (1986). Historia de la matemática. Madrid: Alianza.
Granet, M. (1968). La pensée chinoise. Paris: Albin Michel.
Kline, M. (1985). Matemáticas. La pérdida de la certidumbre. Madrid: Siglo XXI.
Lizcano, E. (1993). Imaginario colectivo y creación matemática. La construcción social del número, el espacio y lo imposible en China y en Grecia. Barcelona: Gedisa.
Lizcano, E. (1999). La metáfora como analizador social. Empiria, 2, 29-60.
Lizcano, E. (2006). Metáforas que nos piensan. Sobre ciencia, democracia y otras poderosas ficciones. Madrid: Traficantes de Sueños.
Lizcano, E. (2009a). La economía como ideología. Un análisis socio-metafórico de los discursos sobre “la crisis”. Revista de Ciencias Sociales, 1(16), 85-102.
Lizcano, E. (2009b). Hablar por metáfora. La mentira verdadera (o la verdad mentirosa) de los imaginarios sociales”, Sociedad, 28, 167-190.
Ortega y Gasset, J. (1979). La idea de principio en Leibniz y la evolución de la teoría deducativa. Madrid: Alianza Editorial.
Sperber, D. (1978). El simbolismo en general. Barcelona: Anthropos.
Szabó, A. (1964a). The Transformation of Mathematics into Deductive Science and the Beginnings of its Foundation on Definitions and Axioms. Part. 1. Scripta Mathematica, 27(1), 27-49.
Szabó, A. (1964b) The Transformation of Mathematics into Deductive Science and the Beginnings of its Foundation on Definitions and Axioms. Part. 2. Scripta Mathematica, 27(2) 27, 3-139.